Sudut-sudut Berelasi Pada Kuadran I, II, III, IV
Menentukan Nilai Sudut Berelasi Berbagai Kuadran
Sudut Berelasi – Adalah perluasan definisi dasar ilmu trigonometri tentang kesebangunan pada segitiga siku-siku yang memenuhi untuk sudut kuadran I atau sudut lancip (0 − 90°).
Rumus Sudut Berelasi
Dengan memakai sudut-sudut relasi, kita mampu menghitung nilai perbandingan pada trigonometri untuk sudut pada kuadran lainnya, bahkan untuk sudut yang lebih dari 360°, termasuk juga sudut negatif.
Sudut Relasi Kuadran I
Untuk α lancip, maka (90° − α°) menghasilkan sudut-sudut kuadran I. Di dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut :
sin (90° − α°) = cos α° cosec (90° − α°) = sec α°
cos (90° − α°) = sin α° sec (90° − α°) = cosec α°
tan (90° − α°) = cot α° cot (90° − α°) = tan α°
Sudut Relasi Kuadran II
Untuk α lancip, maka (90° + α°) dan (180° − α°) menghasilkan sudut-sudut kuadran II dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut :
sin (90° + α°) = cos α° cosec (90° + α°) = sec α
cos (90° + α°) = -sin α° sec (90° + α°) = -cosec α°
tan (90° + α°) = -cot α° cot (90° + α°) = -tan α°
sin (180° − α°) = sin α° cosec (180° − α°) = cosec α°
cos (180° − α°) = -cos α° sec (180° − α°) = -sec α°
tan (180° − α°) = -tan α° cot (180° − α°) = -cot α°
Sudut Relasi Kuadran III
Untuk α lancip, maka (180° + α°) dan (270° − α°) menghasilkan sudut kuadran III. Di dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut :
sin (180° + α°) = -sin α° cosec (180° + α°) = -cosec α°
cos (180° + α°) = -cos α° sec (180° + α°) = -sec α°
tan (180° + α°) = tan α° cot (180° + α°) = cot α°
sin (270° − α°) = -cos α°
cosec (270° − α°) = -sec α°
cos (270° − α°) = -sin α° sec (270° − α°) = -cosec α°
tan (270° − α°) = cot α° cot (270° − α°) = tan α°
Sudut Relasi Kuadran IV
Untuk α lancip, maka (270° + α°), (360° − α°) dan (360° + α°) menghasilkan sudut kuadran IV. D i dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut :
sin (270° + α°) = -cos α° cosec (270° + α°) = -sec α°
cos (270° + α°) = sin α° sec (270° + α°) = cosec α°
tan (270° + α°) = -cot α° cot (270° + α°) = -tan α°
sin (n.360° − α°) = -sin α° cosec (n.360° − α°) = -cosec α°
cos (n.360° − α°) = cos α° sec (n.360° − α°) = sec α°
tan (n.360° − α°) = -tan α° cot (n.360° − α°) = -cot α°
sin (n.360° + α°) = sin α° cosec (n.360° + α°) = cosec α°
cos (n.360° + α°) = cos α° sec (n.360° + α°) = sec α°
tan (n.360° + α°) = tan α° cot (n.360° + α°) = cot α°
Jika diperhatikan, rumus-rumus diatas mempunyai pola yang hampir sama, oleh karena itu sangatlah tidak bijak jika harus menghafalnya satu per satu. Ada 2 hal yang harus diperhatikan, yaitu sudut relasi yang dipaka dan tanda untuk tiap kuadran.
Untuk relasi (90° ± α°) atau (270° ± α°), maka :
sin → cos
cos → sin
tan → cot
Untuk relasi (180° ± α°) atau (360° ± α°), maka :
sin = sin
cos = cos
tan = tan
Tanda masing-masing kuadran :
Kuadran I (0° − 90°) = semua positif
Kuadran II (90° − 180°) = sinus positif
Kuadran III (180° − 270°) = tangen positif.
Kuadran IV (270° − 360°) = cosinus positif
Perbandingan Trigonometri Sudut Negatif (-α)
sin (-α) = -sin α cosec (-α) = -cosec α
cos (-α) = cos α sec (-α) = sec α
tan (-α) = -tan α cot (-α) = -cot α
Contoh soal :
1. Untuk perbandingan trigonometri berikut, nyatakanlah dalam perbandingan trigonometri sudut komplemennya sin 50° ; tan 40° ; cos 35°
Jawab :
sin 50° = sin (90° − 400°)
= cos 40°
tan 40° = tan (90° − 50°)
= cot 50°
cos 35° = cos (90° − 55°)
= sin 55°
Ketiganya bernilai positif, karena sudut 50°, 40° dan 35° berada di kuadran I.
2. Nyatakan tiap perbandingan trigonometri berikut di dalam sudut 37° ! tan 153° ; sin 243° ; cos 333°
Jawab :
Sudut 153° adapada kuadran II, hingga tan 153° memiliki nilai negatif.
tan 153° = tan (180° − 27°)
= -tan 27°
Sudut 243° ada pada kuadran III, sehingga sinus memiliki nilai negatif.
sin 243° = sin (270° − 27°)
= -cos 27°
Sudut 333° ada pada kuadran IV, hingga cosinus memiliki nilai positif.
cos 333° = cos (360° − 27°)
= cos 27°
Daftar pusaka :
1. https://www.google.com/amp/s/ufitahir.wordpress.com/2020/03/18/menentukan-nilai-sudut-berelasi-berbagai-kuadran/amp/
2. https://www.google.com/amp/s/gurubelajarku.com/sudut-berelasi/amp/
Komentar
Posting Komentar